Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Nat Commun ; 14(1): 2488, 2023 04 29.
Article in English | MEDLINE | ID: covidwho-2293756

ABSTRACT

Wildlife is reservoir of emerging viruses. Here we identified 27 families of mammalian viruses from 1981 wild animals and 194 zoo animals collected from south China between 2015 and 2022, isolated and characterized the pathogenicity of eight viruses. Bats harbor high diversity of coronaviruses, picornaviruses and astroviruses, and a potentially novel genus of Bornaviridae. In addition to the reported SARSr-CoV-2 and HKU4-CoV-like viruses, picornavirus and respiroviruses also likely circulate between bats and pangolins. Pikas harbor a new clade of Embecovirus and a new genus of arenaviruses. Further, the potential cross-species transmission of RNA viruses (paramyxovirus and astrovirus) and DNA viruses (pseudorabies virus, porcine circovirus 2, porcine circovirus 3 and parvovirus) between wildlife and domestic animals was identified, complicating wildlife protection and the prevention and control of these diseases in domestic animals. This study provides a nuanced view of the frequency of host-jumping events, as well as assessments of zoonotic risk.


Subject(s)
COVID-19 , Chiroptera , Viruses , Animals , Animals, Domestic/virology , Animals, Wild/virology , Animals, Zoo/virology , Chiroptera/virology , Mammals/virology , Pangolins/virology , Phylogeny , Zoonoses/virology
2.
J Virol ; 97(2): e0171922, 2023 02 28.
Article in English | MEDLINE | ID: covidwho-2213880

ABSTRACT

Coronavirus disease 2019 (COVID-19), which is caused by the novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is the most severe emerging infectious disease in the current century. The discovery of SARS-CoV-2-related coronaviruses (SARSr-CoV-2) in bats and pangolins in South Asian countries indicates that SARS-CoV-2 likely originated from wildlife. To date, two SARSr-CoV-2 strains have been isolated from pangolins seized in Guangxi and Guangdong by the customs agency of China, respectively. However, it remains unclear whether these viruses cause disease in animal models and whether they pose a transmission risk to humans. In this study, we investigated the biological features of a SARSr-CoV-2 strain isolated from a smuggled Malayan pangolin (Manis javanica) captured by the Guangxi customs agency, termed MpCoV-GX, in terms of receptor usage, cell tropism, and pathogenicity in wild-type BALB/c mice, human angiotensin-converting enzyme 2 (ACE2)-transgenic mice, and human ACE2 knock-in mice. We found that MpCoV-GX can utilize ACE2 from humans, pangolins, civets, bats, pigs, and mice for cell entry and infect cell lines derived from humans, monkeys, bats, minks, and pigs. The virus could infect three mouse models but showed limited pathogenicity, with mild peribronchial and perivascular inflammatory cell infiltration observed in lungs. Our results suggest that this SARSr-CoV-2 virus from pangolins has the potential for interspecies infection, but its pathogenicity is mild in mice. Future surveillance among these wildlife hosts of SARSr-CoV-2 is needed to monitor variants that may have higher pathogenicity and higher spillover risk. IMPORTANCE SARS-CoV-2, which likely spilled over from wildlife, is the third highly pathogenic human coronavirus. Being highly transmissible, it is perpetuating a pandemic and continuously posing a severe threat to global public health. Several SARS-CoV-2-related coronaviruses (SARSr-CoV-2) in bats and pangolins have been identified since the SARS-CoV-2 outbreak. It is therefore important to assess their potential of crossing species barriers for better understanding of their risk of future emergence. In this work, we investigated the biological features and pathogenicity of a SARSr-CoV-2 strain isolated from a smuggled Malayan pangolin, named MpCoV-GX. We found that MpCoV-GX can utilize ACE2 from 7 species for cell entry and infect cell lines derived from a variety of mammalian species. MpCoV-GX can infect mice expressing human ACE2 without causing severe disease. These findings suggest the potential of cross-species transmission of MpCoV-GX, and highlight the need of further surveillance of SARSr-CoV-2 in pangolins and other potential animal hosts.


Subject(s)
COVID-19 , Host Specificity , Pangolins , Animals , Humans , Mice , Angiotensin-Converting Enzyme 2/genetics , Cell Line , China , COVID-19/transmission , COVID-19/virology , Lung/pathology , Lung/virology , Mice, Transgenic , Pangolins/virology , SARS-CoV-2/classification , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Swine , Chiroptera
3.
Genome Biol Evol ; 14(2)2022 02 04.
Article in English | MEDLINE | ID: covidwho-1684680

ABSTRACT

The lack of an identifiable intermediate host species for the proximal animal ancestor of SARS-CoV-2, and the large geographical distance between Wuhan and where the closest evolutionary related coronaviruses circulating in horseshoe bats (members of the Sarbecovirus subgenus) have been identified, is fueling speculation on the natural origins of SARS-CoV-2. We performed a comprehensive phylogenetic study on SARS-CoV-2 and all the related bat and pangolin sarbecoviruses sampled so far. Determining the likely recombination events reveals a highly reticulate evolutionary history within this group of coronaviruses. Distribution of the inferred recombination events is nonrandom with evidence that Spike, the main target for humoral immunity, is beside a recombination hotspot likely driving antigenic shift events in the ancestry of bat sarbecoviruses. Coupled with the geographic ranges of their hosts and the sampling locations, across southern China, and into Southeast Asia, we confirm that horseshoe bats, Rhinolophus, are the likely reservoir species for the SARS-CoV-2 progenitor. By tracing the recombinant sequence patterns, we conclude that there has been relatively recent geographic movement and cocirculation of these viruses' ancestors, extending across their bat host ranges in China and Southeast Asia over the last 100 years. We confirm that a direct proximal ancestor to SARS-CoV-2 has not yet been sampled, since the closest known relatives collected in Yunnan shared a common ancestor with SARS-CoV-2 approximately 40 years ago. Our analysis highlights the need for dramatically more wildlife sampling to: 1) pinpoint the exact origins of SARS-CoV-2's animal progenitor, 2) the intermediate species that facilitated transmission from bats to humans (if there is one), and 3) survey the extent of the diversity in the related sarbecoviruses' phylogeny that present high risk for future spillovers.


Subject(s)
Chiroptera/virology , Coronavirus/genetics , Pangolins/virology , Phylogeny , Recombination, Genetic , Animals , Humans , Phylogeography
4.
Zool Res ; 42(6): 834-844, 2021 11 18.
Article in English | MEDLINE | ID: covidwho-1515719

ABSTRACT

Understanding the zoonotic origin and evolution history of SARS-CoV-2 will provide critical insights for alerting and preventing future outbreaks. A significant gap remains for the possible role of pangolins as a reservoir of SARS-CoV-2 related coronaviruses (SC2r-CoVs). Here, we screened SC2r-CoVs in 172 samples from 163 pangolin individuals of four species, and detected positive signals in muscles of four Manis javanica and, for the first time, one M. pentadactyla. Phylogeographic analysis of pangolin mitochondrial DNA traced their origins from Southeast Asia. Using in-solution hybridization capture sequencing, we assembled a partial pangolin SC2r-CoV (pangolin-CoV) genome sequence of 22 895 bp (MP20) from the M. pentadactyla sample. Phylogenetic analyses revealed MP20 was very closely related to pangolin-CoVs that were identified in M. javanica seized by Guangxi Customs. A genetic contribution of bat coronavirus to pangolin-CoVs via recombination was indicated. Our analysis revealed that the genetic diversity of pangolin-CoVs is substantially higher than previously anticipated. Given the potential infectivity of pangolin-CoVs, the high genetic diversity of pangolin-CoVs alerts the ecological risk of zoonotic evolution and transmission of pathogenic SC2r-CoVs.


Subject(s)
COVID-19/veterinary , Evolution, Molecular , Pangolins/virology , SARS-CoV-2/genetics , Animals , Genome, Viral , Phylogeny , RNA, Viral/genetics
5.
Science ; 373(6559): 1076-1077, 2021 Sep 03.
Article in English | MEDLINE | ID: covidwho-1403019

ABSTRACT

Cousins of the pandemic virus in animals help chart the path to humans.


Subject(s)
COVID-19/transmission , Chiroptera/virology , Pangolins/virology , SARS-CoV-2 , Viral Zoonoses/transmission , Animals , China , Humans
7.
Bioessays ; 43(7): e2100015, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1245362

ABSTRACT

RaTG13, MP789, and RmYN02 are the strains closest to SARS-CoV-2, and their existence came to light only after the start of the pandemic. Their genomes have been used to support a natural origin of SARS-CoV-2 but after a close examination all of them exhibit several issues. We specifically address the presence in RmYN02 and closely related RacCSxxx strains of a claimed natural PAA/PVA amino acid insertion at the S1/S2 junction of their spike protein at the same position where the PRRA insertion in SARS-CoV-2 has created a polybasic furin cleavage site. We show that RmYN02/RacCSxxx instead of the claimed insertion carry a 6-nucleotide deletion in the region and that the 12-nucleotide insertion in SARS-CoV-2 remains unique among Sarbecoviruses. Also, our analysis of RaTG13 and RmYN02's metagenomic datasets found unexpected reads which could indicate possible contamination. Because of their importance to inferring SARS-CoV-2's origin, we call for a careful reevaluation of RaTG13, MP789 and RmYN02 sequencing records and assembly methods.


Subject(s)
COVID-19/virology , Chiroptera/virology , Pangolins/virology , SARS-CoV-2/classification , SARS-CoV-2/genetics , Severe acute respiratory syndrome-related coronavirus/genetics , Uncertainty , Angiotensin-Converting Enzyme 2/metabolism , Animals , COVID-19/epidemiology , COVID-19/transmission , Datasets as Topic , Furin/metabolism , Humans , Pandemics , Phylogeny , Severe acute respiratory syndrome-related coronavirus/classification , Severe acute respiratory syndrome-related coronavirus/isolation & purification , SARS-CoV-2/isolation & purification , Sequence Deletion/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Viral Zoonoses/transmission , Viral Zoonoses/virology
8.
EMBO J ; 40(16): e107786, 2021 08 16.
Article in English | MEDLINE | ID: covidwho-1239217

ABSTRACT

Pangolins have been suggested as potential reservoir of zoonotic viruses, including SARS-CoV-2 causing the global COVID-19 outbreak. Here, we study the binding of two SARS-CoV-2-like viruses isolated from pangolins, GX/P2V/2017 and GD/1/2019, to human angiotensin-converting enzyme 2 (hACE2), the receptor of SARS-CoV-2. We find that the spike protein receptor-binding domain (RBD) of pangolin CoVs binds to hACE2 as efficiently as the SARS-CoV-2 RBD in vitro. Furthermore, incorporation of pangolin CoV RBDs allows entry of pseudotyped VSV particles into hACE2-expressing cells. A screen for binding of pangolin CoV RBDs to ACE2 orthologs from various species suggests a broader host range than that of SARS-CoV-2. Additionally, cryo-EM structures of GX/P2V/2017 and GD/1/2019 RBDs in complex with hACE2 show their molecular binding in modes similar to SARS-CoV-2 RBD. Introducing the Q498H substitution found in pangolin CoVs into the SARS-CoV-2 RBD expands its binding capacity to ACE2 homologs of mouse, rat, and European hedgehog. These findings suggest that these two pangolin CoVs may infect humans, highlighting the necessity of further surveillance of pangolin CoVs.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Betacoronavirus/physiology , Pangolins/virology , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Amino Acid Substitution , Angiotensin-Converting Enzyme 2/chemistry , Animals , Binding Sites , HEK293 Cells , Hedgehogs/virology , Host Specificity , Humans , Mice , Models, Molecular , Phylogeny , Protein Binding , Protein Conformation , Rats , Spike Glycoprotein, Coronavirus/genetics , Virus Internalization
9.
Infect Genet Evol ; 93: 104933, 2021 09.
Article in English | MEDLINE | ID: covidwho-1237810

ABSTRACT

A severe respiratory pneumonia COVID-19 has raged all over the world, and a coronavirus named SARS-CoV-2 is blamed for this global pandemic. Despite intensive research into the origins of the COVID-19 pandemic, the evolutionary history of its agent SARS-CoV-2 remains unclear, which is vital to control the pandemic and prevent another round of outbreak. Coronaviruses are highly recombinogenic, which are not well handled with alignment-based method. In addition, deletions have been found in the genomes of several SARS-CoV-2, which cannot be resolved with current phylogenetic methods. Therefore, the k-mer natural vector is proposed to explore hosts and transmission traits for SARS-CoV-2 using strict phylogenetic reconstruction. SARS-CoV-2 clustering with bat-origin coronaviruses strongly suggests bats to be the natural reservoir of SARS-CoV-2. By building bat-to-human transmission route, pangolin is identified as an intermediate host, and civet is predicted as a possible candidate. We speculate that SARS-CoV-2 undergoes cross-species recombination between bat and pangolin coronaviruses. This study also demonstrates transmission mode and features of SARS-CoV-2 in the COVID-19 pandemic when it broke out early around the world.


Subject(s)
COVID-19/transmission , Host-Pathogen Interactions , Phylogeny , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Animals , Biological Evolution , COVID-19/epidemiology , China , Chiroptera/virology , Coronavirus/genetics , Genome, Viral , Pangolins/virology , Spike Glycoprotein, Coronavirus/genetics , Viral Zoonoses/transmission , Viverridae/virology
10.
J Bioinform Comput Biol ; 19(3): 2140005, 2021 06.
Article in English | MEDLINE | ID: covidwho-1223636

ABSTRACT

The pandemic caused by SARS-CoV-2 has had a significant impact on the whole world. In a theory of the origin of SARS-CoV-2, pangolins are considered as a potential intermediate host. To assemble the genome of suspicious coronavirus (CoV) found in pangolins, SARS-CoV-2 was used as a reference in most of the previous studies, implicitly assuming the pangolin CoV and SARS-CoV-2 are the closest neighbors in evolution. However, this assumption may not be true. We investigated how the choice of reference genome affected the resulting CoV genome assembly. We explored various representative CoVs as the reference genome, and found significant differences in the resulting assemblies. The assembly obtained using RaTG13 as a reference showed better statistics in total length, N50, and pairwise distance reconstruction (PDR) scores than the assembly guided by SARS-CoV-2, indicating that RaTG13 may be a better reference. Therefore, RaTG13 should also be considered as a reference for assembling suspicious CoV found in pangolins and other potential intermediate hosts.


Subject(s)
Coronavirus/genetics , Genome, Viral , Genomics/methods , Pangolins/virology , Animals , Coronavirus/isolation & purification , Genomics/standards , Phylogeny , SARS-CoV-2/genetics
11.
J Med Virol ; 93(1): 499-505, 2021 01.
Article in English | MEDLINE | ID: covidwho-1206790

ABSTRACT

The initial cases of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) occurred in Wuhan, China, in December 2019 and swept the world by 23 June 2020 with 8 993 659 active cases, 469 587 deaths across 216 countries, areas or territories. This strongly implies global transmission occurred before the lockdown of China. However, the initial source's transmission routes of SARS-CoV-2 remain obscure and controversial. Research data suggest bat (RaTG13) and pangolin carried CoV were the proximal source of SARS-CoV-2. In this study, we used systematic phylogenetic analysis of Coronavirinae subfamily along with wild type human SARS-CoV, MERS-CoV, and SARS-CoV-2 strains. The key residues of the receptor-binding domain (RBD) and O-linked glycan were compared. SARS-CoV-2 strains were clustered with RaTG13 (97.41% identity), Pangolin-CoV (92.22% identity) and Bat-SL-CoV (80.36% identity), forms a new clade-2 in lineage B of beta-CoV. The alignments of RBD contact residues to ACE2 justified? Those SARS-CoV-2 strains sequences were 100% identical by each other, significantly varied in RaTG13 and pangolin-CoV. SARS-CoV-2 has a polybasic cleavage site with an inserted sequence of PRRA compared to RaTG13 and only PRR to pangolin. Only serine (Ser) in pangolin and both threonine (Thr) and serine (Ser) O-linked glycans were seen in RaTG13, suggesting that a detailed study needed in pangolin (Manis javanica) and bat (Rhinolophus affinis) related CoV.


Subject(s)
Chiroptera/virology , Coronavirus/genetics , Pangolins/virology , Polysaccharides/chemistry , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Animals , Binding Sites , China , Communicable Disease Control , Coronavirus Envelope Proteins/chemistry , Coronavirus Envelope Proteins/genetics , Gene Expression Regulation, Viral , Host Specificity , Humans , Models, Molecular , Phylogeny , Polysaccharides/metabolism , Protein Conformation , Spike Glycoprotein, Coronavirus/chemistry
12.
Cladistics ; 37(5): 461-488, 2021 10.
Article in English | MEDLINE | ID: covidwho-1201590

ABSTRACT

The severe acute respiratory syndrome coronavirus (SARS-CoV) emerged in humans in 2002. Despite reports showing Chiroptera as the original animal reservoir of SARS-CoV, many argue that Carnivora-hosted viruses are the most likely origin. The emergence of the Middle East respiratory syndrome coronavirus (MERS-CoV) in 2012 also involves Chiroptera-hosted lineages. However, factors such as the lack of comprehensive phylogenies hamper our understanding of host shifts once MERS-CoV emerged in humans and Artiodactyla. Since 2019, the origin of SARS-CoV-2, causative agent of coronavirus disease 2019 (COVID-19), added to this episodic history of zoonotic transmission events. Here we introduce a phylogenetic analysis of 2006 unique and complete genomes of different lineages of Orthocoronavirinae. We used gene annotations to align orthologous sequences for total evidence analysis under the parsimony optimality criterion. Deltacoronavirus and Gammacoronavirus were set as outgroups to understand spillovers of Alphacoronavirus and Betacoronavirus among ten orders of animals. We corroborated that Chiroptera-hosted viruses are the sister group of SARS-CoV, SARS-CoV-2 and MERS-related viruses. Other zoonotic events were qualified and quantified to provide a comprehensive picture of the risk of coronavirus emergence among humans. Finally, we used a 250 SARS-CoV-2 genomes dataset to elucidate the phylogenetic relationship between SARS-CoV-2 and Chiroptera-hosted coronaviruses.


Subject(s)
Chiroptera/virology , Host-Pathogen Interactions/physiology , Middle East Respiratory Syndrome Coronavirus/physiology , Phylogeny , SARS-CoV-2/physiology , Severe acute respiratory syndrome-related coronavirus/physiology , Animals , Genome, Viral , Humans , Likelihood Functions , Pangolins/virology , Recombination, Genetic/genetics , Spike Glycoprotein, Coronavirus/metabolism
13.
J Med Virol ; 93(3): 1786-1791, 2021 03.
Article in English | MEDLINE | ID: covidwho-1196491

ABSTRACT

Pangolin metagenomic data obtained from public databases were used to assemble partial or complete viral genomes showing genetic relationship to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), Sendai virus, flavivirus, picornavirus, parvovirus, and genomovirus, respectively. Most of these virus genomes showed genomic recombination signals. Phylogeny based on the SARS-CoV-2-related virus sequences assembled in this study and those recently published indicated that pangolin SARS-CoV-2-related viruses were clustered into two sub-lineages according to geographic sampling sites. These findings suggest the need for further pangolin samples, from different countries, to be collected and analyzed for coronavirus to elucidate whether pangolins are intermittent hosts for SARS-CoV-2.


Subject(s)
COVID-19/virology , Genome, Viral/genetics , Metagenome/genetics , Pangolins/virology , SARS-CoV-2/genetics , Animals , Host Specificity/genetics , Metagenomics/methods , Phylogeny , Recombination, Genetic/genetics
14.
J Gen Virol ; 102(4)2021 04.
Article in English | MEDLINE | ID: covidwho-1177362

ABSTRACT

The identification of SARS-CoV-2-like viruses in Malayan pangolins (Manis javanica) has focused attention on these endangered animals and the viruses they carry. We successfully isolated a novel respirovirus from the lungs of a dead Malayan pangolin. Similar to murine respirovirus, the full-length genome of this novel virus was 15 384 nucleotides comprising six genes in the order 3'-(leader)-NP-P-M-F-HN-l-(trailer)-5'. Phylogenetic analysis revealed that this virus belongs to the genus Respirovirus and is most closely related to murine respirovirus. Notably, animal infection experiments indicated that the pangolin virus is highly pathogenic and transmissible in mice, with inoculated mice having variable clinical symptoms and a fatality rate of 70.37 %. The virus was found to replicate in most tissues with the exception of muscle and heart. Contact transmission of the virus was 100 % efficient, although the mice in the contact group displayed milder symptoms, with the virus mainly being detected in the trachea and lungs. The isolation of a novel respirovirus from the Malayan pangolin provides new insight into the evolution and distribution of this important group of viruses and again demonstrates the potential infectious disease threats faced by endangered pangolins.


Subject(s)
Pangolins/virology , Respirovirus Infections , Respirovirus , Animals , Endangered Species , Female , Genome, Viral , Mice , Phylogeny , Respirovirus/classification , Respirovirus/isolation & purification , Respirovirus/pathogenicity , Respirovirus Infections/epidemiology , Respirovirus Infections/veterinary , Respirovirus Infections/virology
16.
Gene ; 784: 145596, 2021 Jun 05.
Article in English | MEDLINE | ID: covidwho-1144613

ABSTRACT

The SARS-CoV-2 Variant of Concern 202012/01 (VOC-202012/01) is rapidly spreading worldwide owing to its substantial transmission advantage. The variant has changes in critical sites of the spike protein with potential biological significance. Moreover, VOC-202012/01 has a mutation that inactivates the ORF8 protein, whose absence can change the clinical features of the infection. Why VOC-202012/01 is more transmissible remains unclear, but spike mutations and ORF8 inactivation stand out by their known phenotypic effects. Here I show that variants combining relevant spike mutations and the absence of ORF8 occurred in SARS-CoV-2 and related viruses circulating in other host species. A truncated ORF8 (Q23stop) occurred in a SARS-CoV-2-related virus from a pangolin seized in China in 2017, also with several mutations in critical spike sites. Strikingly, I found that variants without ORF8 (E19stop) and with the N501T spike mutation circulated in farmed mink and humans from Denmark. Although with differences to VOC-202012/01, the identification of these variants highlights the danger of having reservoirs of SARS-CoV-2 and related viruses where more transmissible variants may occur and spill over to humans.


Subject(s)
COVID-19/veterinary , Mink/virology , Pangolins/virology , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Viral Proteins/genetics , Animals , COVID-19/transmission , COVID-19/virology , China , Codon, Nonsense , Denmark , Disease Reservoirs/veterinary , Disease Reservoirs/virology , Host Specificity , Humans , SARS-CoV-2/isolation & purification , Viral Proteins/metabolism
17.
Nat Commun ; 12(1): 1607, 2021 03 11.
Article in English | MEDLINE | ID: covidwho-1132069

ABSTRACT

In recognizing the host cellular receptor and mediating fusion of virus and cell membranes, the spike (S) glycoprotein of coronaviruses is the most critical viral protein for cross-species transmission and infection. Here we determined the cryo-EM structures of the spikes from bat (RaTG13) and pangolin (PCoV_GX) coronaviruses, which are closely related to SARS-CoV-2. All three receptor-binding domains (RBDs) of these two spike trimers are in the "down" conformation, indicating they are more prone to adopt the receptor-binding inactive state. However, we found that the PCoV_GX, but not the RaTG13, spike is comparable to the SARS-CoV-2 spike in binding the human ACE2 receptor and supporting pseudovirus cell entry. We further identified critical residues in the RBD underlying different activities of the RaTG13 and PCoV_GX/SARS-CoV-2 spikes. These results collectively indicate that tight RBD-ACE2 binding and efficient RBD conformational sampling are required for the evolution of SARS-CoV-2 to gain highly efficient infection.


Subject(s)
COVID-19/virology , Chiroptera/virology , Coronavirus/chemistry , Coronavirus/genetics , Pangolins/virology , SARS-CoV-2/chemistry , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Amino Acid Sequence , Angiotensin-Converting Enzyme 2/chemistry , Animals , COVID-19/epidemiology , COVID-19/transmission , Cryoelectron Microscopy , Evolution, Molecular , Host Microbial Interactions , Humans , Models, Molecular , Pandemics , Protein Domains , Sequence Homology, Amino Acid , Species Specificity , Spike Glycoprotein, Coronavirus/ultrastructure
18.
Front Public Health ; 8: 608765, 2020.
Article in English | MEDLINE | ID: covidwho-1110360

ABSTRACT

A novel severe acute respiratory syndrome coronavirus, SARS-CoV-2, emerged in China in December 2019 and spread worldwide, causing more than 1.3 million deaths in 11 months. Similar to the human SARS-CoV, SARS-CoV-2 shares strong sequence homologies with a sarbecovirus circulating in Rhinolophus affinis bats. Because bats are expected to be able to transmit their coronaviruses to intermediate animal hosts that in turn are a source of viruses able to cross species barriers and infect humans (so-called spillover model), the identification of an intermediate animal reservoir was the subject of intense researches. It was claimed that a reptile (Ophiophagus hannah) was the intermediate host. This hypothesis was quickly ruled out and replaced by the pangolin (Manis javanica) hypothesis. Yet, pangolin was also recently exonerated from SARS-CoV-2 transmission to humans, leaving other animal species as presumed guilty. Guided by the spillover model, several laboratories investigated in silico the species polymorphism of the angiotensin I converting enzyme 2 (ACE2) to find the best fits with the SARS-CoV-2 spike receptor-binding site. Following the same strategy, we used multi-sequence alignment, 3-D structure analysis, and electrostatic potential surface generation of ACE2 variants to predict their binding capacity to SARS-CoV-2. We report evidence that such simple in silico investigation is a powerful tool to quickly screen which species are potentially susceptible to SARS-CoV-2. However, possible receptor binding does not necessarily lead to successful replication in host. Therefore, we also discuss here the limitations of these in silico approaches in our quest on the origins of COVID-19 pandemic.


Subject(s)
COVID-19/immunology , COVID-19/pathology , Host Specificity/genetics , Receptors, Angiotensin/genetics , Replication Origin , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Animals , China , Chiroptera/virology , Genetic Predisposition to Disease , Humans , Ophiophagus hannah/virology , Pandemics , Pangolins/virology , Polymorphism, Single Nucleotide
19.
Nat Commun ; 12(1): 972, 2021 02 09.
Article in English | MEDLINE | ID: covidwho-1075220

ABSTRACT

Among the many questions unanswered for the COVID-19 pandemic are the origin of SARS-CoV-2 and the potential role of intermediate animal host(s) in the early animal-to-human transmission. The discovery of RaTG13 bat coronavirus in China suggested a high probability of a bat origin. Here we report molecular and serological evidence of SARS-CoV-2 related coronaviruses (SC2r-CoVs) actively circulating in bats in Southeast Asia. Whole genome sequences were obtained from five independent bats (Rhinolophus acuminatus) in a Thai cave yielding a single isolate (named RacCS203) which is most related to the RmYN02 isolate found in Rhinolophus malayanus in Yunnan, China. SARS-CoV-2 neutralizing antibodies were also detected in bats of the same colony and in a pangolin at a wildlife checkpoint in Southern Thailand. Antisera raised against the receptor binding domain (RBD) of RmYN02 was able to cross-neutralize SARS-CoV-2 despite the fact that the RBD of RacCS203 or RmYN02 failed to bind ACE2. Although the origin of the virus remains unresolved, our study extended the geographic distribution of genetically diverse SC2r-CoVs from Japan and China to Thailand over a 4800-km range. Cross-border surveillance is urgently needed to find the immediate progenitor virus of SARS-CoV-2.


Subject(s)
Chiroptera/virology , Pangolins/virology , SARS-CoV-2/physiology , Amino Acid Sequence , Animals , Antibodies, Neutralizing/blood , Asia, Southeastern , COVID-19/virology , Chiroptera/blood , Geography , Neutralization Tests , Phylogeny , Protein Domains , Receptors, Cell Surface/chemistry , Receptors, Cell Surface/metabolism
20.
Nat Commun ; 12(1): 837, 2021 02 05.
Article in English | MEDLINE | ID: covidwho-1065863

ABSTRACT

Coronaviruses of bats and pangolins have been implicated in the origin and evolution of the pandemic SARS-CoV-2. We show that spikes from Guangdong Pangolin-CoVs, closely related to SARS-CoV-2, bind strongly to human and pangolin ACE2 receptors. We also report the cryo-EM structure of a Pangolin-CoV spike protein and show it adopts a fully-closed conformation and that, aside from the Receptor-Binding Domain, it resembles the spike of a bat coronavirus RaTG13 more than that of SARS-CoV-2.


Subject(s)
COVID-19/prevention & control , Evolution, Molecular , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Angiotensin-Converting Enzyme 2/metabolism , Animals , Binding, Competitive , COVID-19/epidemiology , COVID-19/virology , Cryoelectron Microscopy , Humans , Models, Molecular , Pandemics , Pangolins/virology , Protein Binding , Protein Domains , SARS-CoV-2/metabolism , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL